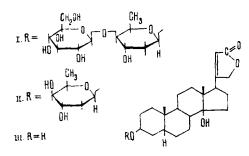
AN INVESTIGATION OF THE GLYCOSIDES OF JUTE.

V. COROLOSIDE AND DESGLUCOCOROLOSIDE


V. A. Maslennikova and N. K. Abubakirov

The fraction of glycosides of medium polarity obtained by the ethanolic extraction of the seeds of *Corchorus olitorius* L. were repeatedly chromatographed on alumina in the butanl-ol-toluene-water (1:1:1) system and - in addition to olitoriside [1] and erysimoside [2] - we isolated 0.005% of the new glycoside coroloside (I), $C_{35}H_{54}O_{12}$, mp 235-237°C, $[\alpha]_D^{20}$ -46.7 ± 2° (c 1.50; ethanol). Coroloside penta-O-acetate had mp 183-184°C, $[\alpha]_D^{20}$ -21.5 ± 2 (c 1.45, methanol).

When a mixture of 20 mg of (I) and 1 ml of 0.1 M methanolic H_2SO_4 was allowed to stand for a day at 20°C, the coroloside hydrolyzed completely. After the addition of an equal volume of water and evaporation of the methanol, crystals deposited (13 mg) with mp 236-238°C, $[\alpha]_D^{2^\circ} + 15.0 \pm 2^\circ$ (c 1.90; methanol). On the basis of its mass spectrum (M⁺ 374; m/e 356, 338, 323, 246, 203) and the results of a chromatographic comparison (PC in the chloroform-dioxane-methanol (7: 2: 0.5)/formamide system and TLC on SiO₂ in the chloroform-10% methanol and chloroform-benzene-methanol (5:5:2) systems), the aglycone was identified as digitoxigenin (III). Olitoribiose was found in the aqueous solution after the separation of (III) [PC in the butan-1-ol-benzene-pyridine-water (5:1:3:3) system]. Hydrolysis of the disaccharide with 1N H₂SO₄ formed D-glucose [PC in the butan-1-ol-methyl ethyl ketone-borate buffer (1:1:2) and TLC on SiO₂ impregnated with NaH₂PO₄ in the butan-1-ol-methanol-water (5:3:1) system] and D-boivinose [3] [PC in the toluene-butan-1-ol-water (4:1:5) system and TLC on SiO₂ with the chloroform-methanol (9:1) and butan-1-ol-methanol-water (5:3:1) systems].

The same sugars were formed when the initial glycoside (I) was hydrolyzed with 1 N H_2SO_4 .

Under the action of the pancreatic juice of the grape snail, (I) was cleaved into Dglucose and desglucocoroloside (II), $C_{29}H_{44}O_7$, mp 190-192°C, $[\alpha]_D^{20}-22,9 \pm 2^{\circ}$ (c 1.66; methanol). Glycoside (II) was readily hydrolyzed by 0.1 N H₂SO₄, forming digitoxigenin (III) and D-boivinose. The β -glycosidic nature of the linkage of (III) with the sugar was established by a calculation of molecular rotation differences. Desglucocoroloside (II) has the structure of digitoxygenin 3-O- β -D-boivinoside. The structure of olitoribiose has been shown previously [4]. According to this, coroloside is represented by the structure of digitoxigenen 3-O-[4'- β -D-glucopyranosyl- β -D-boivinopyranoside].

Institute of the Chemistry of Plant Substances, Academy of Sciences of the Uzbek SSR. Translated from Khimiya Prirodnykh Soedinenii, No. 4, pp. 525-526, July-August, 1975. Original article submitted March 25, 1975.

© 1976 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

LITERATURE CITED

- 1. N. K. Abubakirov, V. A. Maslennikova, and M. B. Gorovits, Zh. Organ. Khim., 28, 2279 (1958); <u>29</u>, 1235 (1959). V. Rao and D. V. Rao, Ind. J. Chem., No. 12, 7 (1969).
- 2.
- O. Schindler, and T. Reichstein, Helv. Chim. Acta, 35, 730 (1952). 3.
- R. U. Umarova, V. A. Maslennikova, and N. K. Abubakirov, Khim. Prirodn. Soedin., 325 4. (1968).